

UBES

MEASUREMENTS/REGULATIONS

for Thermoelements

Servis i prodazba: Bitola Stara carsija: 047/203 330 Servis i prodazba: Skopje G.T.C. Bunjakovec 02/309 8 130 Whether in research and development, in modern industrial production or even in the home – there is no area in which measurements, control processes and regulations are not required. Today, there are constantly increasing demands for data accuracy. At the same time, the operating conditions for measuring and regulation instruments are becoming consistently stricter, resulting from, for example, temperature change endurance or aggressive mediums.

Owing to their competent high-tech material, technical ceramics made by W. HALDENWANGER have a tradition of performing strikingly well in a variety of extreme applications. This brochure shows a selection of possible applications within measurement and control technology and delivers important information for engineering and construction of ceramic components.

Aluminium oxide ceramic is commonly used to protect delicate sensors which are in constant contact with, for example, corrosion and other damaging processing substances.

Plugs for control lines in nuclear power plants are subject to high radiation; here, synthetic materials were not, or only partially resistant. However, our Alsint 99.7 components are resistant. These Alsint 99.7 components are also faultless in radioactive contaminated areas. As a result of the extreme working temperatures, modern measuring methods such as DTA and DTC require ceramic sheath tubes and other ceramic components – specifically ultrapure Alsint 99.7 is used with DTA and DTC. Laser tubes made of Alsint 99.7 are also used to control the motion sequences of the He-Ne Lasers in harsh operating conditions.

Sheath tubes made of various ceramic materials such as Alsint 99.7, Pythagoras, Sillimantin 60 NG, Sillimantin 60, SiC, Halsic-R and Halsic-I, as well as insulation rods made of Alsint 99.7 or Pythagoras, are applied in the field of temperature measurement.

Within the processes of controlled engineering, corrosion and abrasion, in connection with high temperatures, can result in extreme operational demands which metallic regulation carrying capacities can not withstand. In such cases, Alsint 99.7 or Zirconia components ensure reliable operations.

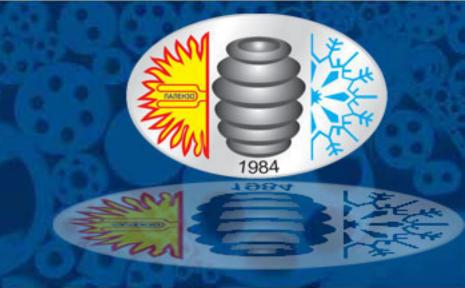
Technical ceramics reveals its strengths when other materials have long failed to fulfil necessary requirements. The diversity of design and utilization are therefore nearly limitless.

CERAMIC SHEATH TUBES

ALSIN	T 99.7	PYTHA	GORAS	SILLIMANTIN 60	
Type C 799 according to DIN EN 60672 Al ₂ O ₃ -content 99.7 %		Type C 610 accordir Al ₂ O ₃ -content approx. 6		Type C 530 according to DIN EN 6067 Al ₂ O ₃ -content 73 – 75 %	
Outer / Inner Ø in mm	Outer / Inner Ø in mm	Outer / Inner Ø in mm	Outer / Inner Ø in mm	Outer / Inner Ø in mm	
0.8 x 0.3	12.0 x 8.0	0.8 x 0.3	14.0 x 10.0	15×10	
1.3 x 0.7	12.7 x 8.9	1.3 x 0.7	15.0 x 10.0	20 x 15	
1.6 x 1.0	14.0 x 10.0	1.6 x 1.0	15.0 x 11.0	22 x 17	
1.8 x 1.2	15.0 x 10.0	1.8 x 1.2	16.0 x 12.0	24 x 19	
2.0 x 1.0	17.0 x 12.0	2.0 x 1.0	17.0 x 12.0	26 x 18	
2.7 x 1.7	17.0 x 13.0	2.7 x 1.7	17.0 x 13.0	28 x 22	
3.0×2.0	17.5 x 11.1	3.0 x 2.0	17.5 x 11.1	30 x 23	
4.0 x 2.0	20.0 x 15.0	4.0 x 2.0	20.0 x 15.0		
5.0 x 3.0	24.0 x 18.0	5.0 x 3.0	24.0 x 19.0		
6.0 x 4.0	25.4 x 19.1	6.0 x 4.0	25.4 x 19.1		
8.0×5.0	26.0 x 20.0	8.0 x 5.0	26.0 x 18.0		
9.0×6.0	28.0 x 22.0	9.0 x 6.0	26.0 x 20.0		
9.6 x 6.4	30.0 x 23.0	10.0 x 6.0	28.0 x 22.0		
10.0 x 6.0		10.0 x 7.0	30.0 x 23.0		
10.0 x 7.0		12.0 x 8.0			
max. length 3500 mm depending on outer Ø		max. length 3500 mm	depending on outer Ø	max. length 3500 mm depending on outer Ø	

fine and course structure, SiC-content approx. 70 and 90 %, clay-bound		HALS	SIC-R	HALSIC-I
			DIN EN 12212 SiC-content ≥ 99 %	According to DIN EN 12212, reaction- bound, Si-infiltrated SiC, SiC-concentration approx. 90 %, Si-free content ca.10 %
Outer/Inner Ø in mm	Outer / Inner Ø in mm	Outer / Inner Ø in mm	Outer / Inner Ø in mm	Outer / Inner Ø in mm
17 x 12	30 x 23	20 x 10	34 x 24	20×13
20 x 12	33 x 28	22 x 12	35 x 25	22 x 15
20 x 15	35 x 27	25 x 15	38 x 25	25 x 18
22 x 17	40 x 32	30 x 15	40 x 30	27 x 20
24 x 19	45 x 25	30 x 20	45 x 35	30 x 20
26 x 18	45 x 35	32 x 22	50 x 38	45 x 35
26 x 20	50 x 25	- Approximated	300,000,000,000	Transferred Marina Page
max.length 2000 mm depending on outer Ø		max. length 2100 mm	depending on outer Ø	max. length 2100 mm depending on outer Ø

Dimensions not included in the table can be custom made upon request.


All of the following tubes are available: both ends open, one end closed, both ends open with flange, one end closed with flange. Tolerances are in compliance with DIN 40 680. Customized tolerances upon request.

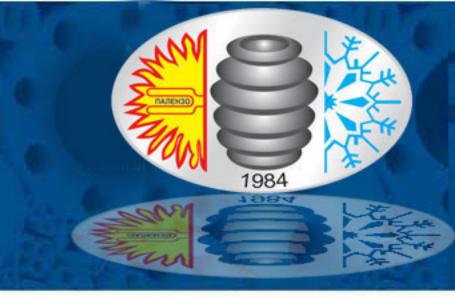
2-BORE AND 4-BORE INSULATION RODS

Tools available

Insulation rods made of Alsint 99.7 or Pythagoras are used to insulate inserted thermal wires. In accordance with DIN 43725, Pythagoras insulation rods can be heated to temperatures up to 2732°F/1500°C. For higher temperatures, we recommend Alsint 99.7 insulation rods.

	AL	SINT 99.7	TYPEC	799	11		PYT	HAGORA	S TYPE C	610	
2	2-bore rods 4-bore rods			2	2-bore rods			4-bore rods			
	\odot			· · ·			\odot				
* 0 Ø/B Ø	00/80	OØBØ	* 0 Ø/B Ø	OØ/BØ	00/80	* 0 Ø/B Ø	OØBØ	00/80	*OØ/BØ	OØ/BØ	0 <i>0</i> /B <i>0</i>
1.2 0.2 1.2 0.3 1.4 0.3 1.7 0.3 1.9 0.6 2.0 0.4 2.0 0.6 2.1 0.6 2.1 0.6 2.3 0.5 2.7 0.8 2.9 0.5 3.0 0.7 3.1 1.0 3.2 1.1 3.3 1.1 3.6 0.5 3.6 0.8 3.7 1.1 3.7 1.2 3.8 1.1 3.9 1.2 4.0 0.8 4.1 0.5 4.1 0.9 4.1 1.0 4.2 1.2 4.3 1.3 4.4 1.3 4.5 1.2 4.6 1.0 4.7 1.1 4.7 1.3 4.7 1.5 4.8 1.5 4.9 1.7	5.2 0.2 5.2 1.6 5.2 1.7 5.2 1.8 5.4 1.3 5.5 1.6 5.5 1.8 5.5 1.9 5.5 1.9 5.7 1.1 5.7 1.8 5.8 2.0 5.9 1.0 5.9 1.0 5.9 1.0 5.9 1.0 6.0 1.8 6.1 1.9 6.2 1.0 6.2 1.0 6.3 0.9 6.4 1.5 6.4 2.1 6.7 1.5 6.8 0.9 6.8 0.9 6.8 1.5 6.8 0.9 6.8 1.5 6.9 1.0 6.9 1.6 6.9 1.6	7.9 1.8 8.0 2.0 8.2 1.8 8.2 2.5 8.3 1.6 8.4 2.9 8.5 1.3 8.7 2.6 8.8 1.5 8.9 2.6 9.0 1.6 9.1 2.5 9.3 2.4 9.3 3.0 9.6 2.1 9.7 2.5 9.8 2.9 10.0 2.3 10.0 3.1 10.0 3.8 10.2 1.5 10.2 2.7 10.3 2.8 10.9 2.7 10.9 3.9 11.1 3.1 11.1 3.9 11.3 3.6 11.4 2.5 11.6 1.5 12.2 3.3 12.2 3.4 12.3 3.0 12.5 4.1 12.6 1.2 13.6 4.6 13.8 2.5 15.0 4.6 15.9 3.3	1.5 0.3 1.7 0.4 2.3 0.5 2.4 0.6 2.6 0.6 2.7 0.7 2.8 0.7 2.9 0.7 3.2 0.7 3.2 0.7 3.3 0.8 3.6 0.7 3.6 1.1 3.8 0.8 3.8 1.0 3.9 0.7 4.0 1.1 4.1 0.7 4.1 0.8 4.2 0.7 4.2 0.8 4.2 1.2 4.3 0.7 4.2 0.8 4.2 1.2 4.3 0.7 4.3 0.8 3.4 1.0 4.7 0.7 4.8 1.2 4.8 1.5 5.0 1.1 5.0 1.2 5.1 1.0 5.2 1.2 5.2 1.3	6.5 1.3 6.6 1.0 6.6 1.3 6.6 1.5 6.7 1.2 6.8 1.5 6.0 1.3 6.0 1.4 6.1 1.8 6.2 1.7 6.4 1.6 6.5 1.7 6.4 1.6 6.5 1.7 6.6 1.5 7.0 1.5 7.0 1.5 7.8 2.0 7.9 1.5 8.3 1.7 8.4 1.9 8.5 1.5 8.6 1.9 8.6 2.3 8.6 1.9 8.6 2.9 8.8 1.9 8.8 2.9 8.8 1.9 8.8 2.9 8.8 2.9	10.0 1.8 10.0 3.1 10.2 2.7 10.3 2.3 10.5 1.1 10.5 1.5 10.7 2.5 11.6 2.5 11.7 3.5 11.8 3.8 11.9 3.9 12.6 3.6 12.9 4.1 13.3 3.1 13.3 3.5 14.2 3.6 14.3 3.5 15.8 3.8 16.9 4.6	1.1 0.3 1.2 0.2 1.2 0.3 1.4 0.3 1.5 0.4 1.6 0.3 1.8 0.6 1.9 0.6 2.0 0.6 2.1 0.6 2.1 0.6 2.1 0.6 2.1 0.6 2.2 0.7 3.0 1.1 3.1 1.1 3.2 1.0 3.4 0.5 3.4 0.8 3.5 1.1 3.5 1.2 3.7 1.1 3.8 0.6 3.8 0.8 3.9 0.9 3.9 0.9 3.9 1.2 4.2 1.3 4.2 1.2 4.2 1.3 4.2 1.2 4.4 0.9 4.4 1.0 4.5 1.6 4.6 1.6 4.7 1.4 4.7 1.7 4.9 1.6 4.9 1.7	5.1 1.5 5.1 1.9 5.2 1.7 5.2 1.9 5.4 1.8 5.4 1.9 5.5 1.8 5.5 1.8 5.6 1.8 5.6 1.8 5.6 1.8 5.9 1.8 5.9 2.0 6.0 1.5 6.0 2.0 6.3 1.5 6.4 1.4 6.5 1.9 6.4 1.4 6.5 1.9 6.5 1.8 6.7 1.9 6.9 1.0 6.0 2.0 6.0 1.5 6.1 1.8 6.2 1.8 6.4 1.4 6.5 1.8 6.5 1.8 6.6 1.8 6.7 1.9 6.8 1.8 6.9 1.0 6.0 2.0 6.0 1.5 6.1 1.8 6.2 1.8 6.3 1.8 6.4 1.4 6.5 1.8 6.5 1.8 6.6 1.9 6.7 1.9 6.8 2.2 7.0 1.1 7.0 2.6 7.1 2.4 7.2 2.4 7.3 1.8 6.2 2.6 6.3 1.5 6.4 2.2 7.7 1.7 7.7 2.4 7.8 1.8 6.2 2.4 7.8 1.8 6.8 2.2 7.9 1.8 7.1 2.4 7.2 2.4 7.3 1.8 7.5 1.8 7.7 2.4 7.8 1.8 8.2 2.4 8.2 2.6 8.4 0.5	8.5 2.5 8.7 2.3 9.0 2.0 9.1 2.4 9.2 2.8 9.4 2.9 9.7 2.7 9.7 3.7 9.8 3.7 9.9 3.9 10.2 2.7 10.4 3.8 10.4 3.8 10.5 3.0 10.6 3.5 10.7 2.5 10.7 2.5 10.7 3.7 10.9 1.5 11.0 3.0 11.5 3.3 11.7 4.0 11.9 3.9 12.8 4.5 13.0 2.4 14.1 4.5 14.2 4.5 15.3 4.8 17.7 4.0 18.3 4.1	1.5 0.3 1.7 0.4 2.1 0.5 2.3 0.6 2.4 0.6 2.5 0.6 2.5 0.6 2.5 0.7 2.6 0.6 2.7 0.6 2.8 0.8 3.0 0.7 3.1 0.8 3.2 0.9 3.4 1.0 3.4 1.2 3.5 0.8 3.7 0.7 3.7 0.9 3.8 0.6 3.8 0.9 3.8 0.9 3.9 0.8 3.9 0.8 4.5 0.9 4.5 0.9 4.5 0.9 4.5 0.8 4.5 0.9 4.5 1.1 4.5 1.2 4.5 1.5 4.7 1.1	4.9 1.1 4.9 1.4 5.1 1.2 5.2 1.3 5.3 1.0 5.3 1.1 5.3 1.2 5.4 1.1 5.5 1.5 5.6 1.5 5.7 1.2 5.8 1.6 5.8 1.7 6.0 1.6 6.1 1.7 6.2 1.5 6.2 2.0 6.3 1.0 6.1 1.7 6.2 1.5 6.3 1.0 6.1 1.7 6.2 1.5 6.3 1.0 6.1 1.7 6.2 1.5 6.3 1.0 6.3 1.	8.7 2.2 8.8 2.5 9.1 2.5 9.2 2.1 9.3 2.8 9.4 1.8 9.4 3.0 9.5 1.5 9.8 1.1 9.8 1.4 10.0 2.4 11.0 3.6 11.0 3.6 11.1 3.7 11.2 3.8 11.5 3.3 11.8 3.5 12.5 3.0 12.5 3.4 12.5 3.8 13.2 4.0 13.4 3.4 14.2 4.0 14.8 3.7 15.8 4.5

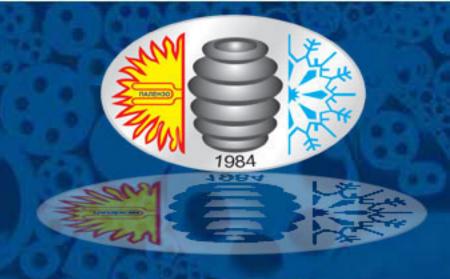
^{*} OØ = Outer diameter in mm


BØ = Bore diameter in mm

MULTI-BORE INSULATION RODS

Tools available

			ALSINT 9	9.7 TYPE	C 799 /	PYTHA	GORAS T	/PE C 610			
	6-bor	e rods			8-bore	e rods			10-bor	e rods	
	6	9		600			600				
* 0Ø	6×BØ	OØ	6×BØ	* 0 Ø	8×BØ	00	8×BØ	* 0 Ø	10 x B Ø	00	10 x B
1.5 4.0 4.4 5.0 6.0 8.0	0.25 0.75 1.00 1.10 1.20 1.20	1.5 4.0 4.5 5.1 6.0 7.5	0.25 1.10 1.10 1.20 1.10 1.20	4.2 4.8 6.0 6.4 7.5 12.7	0.75 0.80 0.55 1.00 0.80 2.10	4.0 4.5 5.0 6.0 7.0 12.0	0.75 0.80 0.60 1.00 0.80 2.00	5.3 5.5 5.7 6.0 7.0 8.0	0.40 0.80 0.65 0.75 1.10 0.70	5.0 5.2 5.4 5.6 6.5 7.5	0.40 0.80 0.65 0.75 1.10 0.70
5-b	ore rods w	rith centre b	ооге	6-t	ore rods w	rith centre bore 7-bore rods with centre bore					
	6				6	9			60		
*0Ø	5×BØ	OØ	5×BØ	*0Ø	6×BØ	OØ	6×BØ	*00	7×BØ	OØ	7×B (
2.7 4.5	0.35 0.5	2.6 4.3	0.35 0.5	2.1 4.9	0.4 0.56	2.0 4.6	O. 4 O. 55	2.0 3.2	0.25 0.3	1.9 3.0	0.25 0.3
9.4	1.0	8.7	1.0	5.4	1.1	5.0	1.1	17.0	4.0	16.0	3.7
	5-b	ore rods w and 4 sm	ith centre t aller bores	ооге		7-bore rods with centre bore and 6 smaller bores					
		6	3					6	3		
*0Ø	CBØ	4×BØ	OØ	CBØ	4×BØ	*00	CBØ	6×BØ	OØ	CB Ø	6×B
3.0 4.0	0.9 1.5	0.30 0.75	2.8 4.5	0.9 1.2	0.50 0.75	3.7 4.0	1.8 1.8	0.45 0.45	3.5 4.0	1.7 1.7	0.45 0.75
5.0	2.4	0.75	7.7	2.9	1.20	5.0	1.8	0.75	5.0	1.8	0.70
8.5 9.0	4.0 3.2	0.80 1.15	8.0 9.2	3.7 4.0	0.80 1.10	11.0 13.3	4.3 4.4	2.10 2.40	10.4 12.5	4.0 4.1	2.00 2.30
	13-t	ore rods w and 12 sm						Oval 2-t	ore rods		
		8	3			200			<u>o</u>		
*0Ø	CBØ	12 × B Ø	OØ	CBØ	12×BØ			x BØ	W /	W2.W3	x DØ
8.6 9.6	4.4 2.1	0.3 1.2	7.7 9.0	4.1 1.9	0.3 1.2	3.0 4.5		x 0.7 x 1.5	2.3 / 3.0 /	1.4	x 0.7 x 1.0 x 1.0
9.6	2.1	1.1	9.0	2.0	1.1	7.5 11.5	/ 5.0	x 2.2 x 3.9	4.0 / 4.6 /	2.7 3.3	x 1.0 x 1.5
						12.0		x 4.0	11.5	6.3	x 4.2


* OØ = Outer diameter in mm

Servis i prodazba:

CBØ = Centre bore diameter in mm

B Ø = Bore diameter in mm

DIN MEASUREMENTS

→ <u> </u>				ore insulation rods ording to DIN 43725		Wire Ø		1-bore insulation rods according to DIN 43725		
	Outers (d ₂) in n		3ore⊘ ∮inmm	Length in mm	Ø in mm	Oute (d ₁) in	218077	erØ Length mm in mm		
	5.5		1.2	205 275 380	≤ 0.8	2.7		.7 5, 10, 25,		
nsulation rods 9 2	8.5		1.5	560 770 1060 1460 2060	≤ 0.8	6.0	ali.	.0 5, 10, 25,		
→	1			TABLE	1: ceramic sh	eath tui	oes DIN 4372	18		
1	DIN EN 6067.2	Outer 2 (d ₁) in mi		n L	.ength (L) in mm		Thermal sho resistance	Permeability	Max. permissible continuous temp.	
		10	7	200, 270	0, 375, 530, 740	, 1030				
	C 610	15	11:	530, 740	0, 1030, 1430, 2	030	medium to good	gastight	2732 °F 1500 °C	
ł		24	19	530, 740	0, 1030, 1430					
1	C 530	26	18	530, 740	0, 1030, 1430		very good	porous	2912°F/1600°C	
		10	6	200, 270	0, 375, 530		0		401000 100.00	
Ø l	C 799	15	10	530, 740	0, 1030		medium	gastight	2912 °F 1600 °C	
		24	18	630 740	0, 1030, 1430				800888 98	

DESIGN

Unglazed. Admissible tolerance of the wall thickness is in compliance with DIN 40680 Part 1, degree of accuracy: Coarse. Admissible deflection is in compliance with DIN 40680 Part 2, degree of accuracy: Fine, with the following specifications: A straight rod, diameter 0.8 x (d1-2s), must be able to be inserted to the bottom of the sheath tube. The rounded bottom of the sheath tube uniformly becomes the cylindrical section of the sheath tube.

REQUIREMENTS

Thermal shock resistance:

No visible damage after test implementation.

Dimensional stability: Original straightness after test implementation.

Gastightness: No air is released during testing: only valid for the sheath tubes labelled gastight in Table 1.

TESTS

Thermal shock resistance:

The sheath tube is inserted with the closed end into a 40 mm internal diameter tube furnace at

a constant rate (Table 2). The furnace is heated to the maximum permissible continuous temperature of the sheath tube. The sheath tube must not come in contact with the tube furnace, therefore a vertical setup of the tube furnace is recommended. After a minimum of 20 minutes holding time, the sheath tube is removed at the same rate and is hung freely in order to cool in calmair.

TABLE 2				
Diameter d1 in m m	Insertion rate cm/min			
10	100			
15	50			
24 and 26	1			

Dimensional stability:

The sheath tube is horizontally clamped into the tube furnace used for thermal shock resistance testing and is then heated to the maximum permissible continuous temperature. This procedure lasts for 30 minutes.

Gastightness:

The sheath tube is exposed to an inner overpressure of 2 bar, and then submersed in water for one minute.

Note: The tests should be conducted in the abovementioned order. The thermal shock resistance tests and dimensional stability tests can be conducted simultaneously when the tube furnace is setup horizontally.

GUIDELINES

for the selection of sheath tube materials according to DIN 43724, Paragraph 7:

- Alkalis- and hydrofluoric acid-free gases up to 2732 °F / 1500 °C: Type C 610
- Contact with alkali vapours up to 2732 °F / 1500 °C: Type C 799
- Gases of all kinds, if inner tubes are gastight, up to 2912 °F / 1600 °C: Type C 530
- Melting glass up to 2732 °F / 1500 °C: Type C 799

(hot general specifications; reference values only)

Servis i prodazba: Bitola Stara carsija: 047/203 330

TOLERANCES ACCORDING TO DIN 406:

Accuracy (admissible deflection fain mm)

medium

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.65 0.70

0.80

0.85

0.90

1.00

1.25

1.50

1.75

2.00

2.25

2.50

3.00

3.50

4.00

4.50

5.00

Degree of accuracy

coarse

Common

application

0.5% -1

medium

Ţ	Diameter and d	eflection tolera	inces witho	out grinding acc	ording to DIN 40680)
Nominal Ø	Accuracy add	n issible tolerances in	mm)	Nominal length	A coura cy (admissib	le c
or length in mm	coarse	medic	ım:	in mm	coarse	
up to 4	± 0.4	± 0.	15	upto 30	1.7	Г
above 4 up to 6	± 0.6	± 0.	20 abo	ove 30 up to 40	1.8	
above 6 up to 8	± 0.7	± 0.		ove 40 upto 50	1.9	
above 8 up to 10	± 0.8	± 0.	TOTAL SECTION	ove 50 upto 60	2.0	
above 10 up to 13	± 1.0	± 0.	ACTUAL CONTRACTOR OF THE PERSON OF THE PERSO	ove 60 upto 70	2.1	
above 13 up to 16	± 1.2	± 0.	0700C	ove 70 upto 90	2.1	
above 16 up to 20	± 1.2	± 0.	NOT THE RESERVE TO A STATE OF THE PARTY OF T	ove 80 upto 90	2.2	
above 20 up to 25	± 1.5 ± 1.5	± 0.	- 27.00 State of the Control of the	ove 90 up to 100 ove 100 up to 110	2.3	
above 25 up to 30 above 30 up to 35	± 1.5 ± 2.0	± 0. ± 0.	10.000	ove 100 up to 110 ove 110 up to 125	2.4 2.5	
above 35 up to 40	± 2.0	± 0.	TOTAL CONTRACTOR OF THE PROPERTY OF THE PROPER	ove 125 up to 140	2.6	
above 40 up to 45	± 2.0	± 0.	1200	ove 140 up to 165	2.7	
above 45 up to 50	± 2.5	± 0.	CONTRACT CON	ove 166 up to 170	2.9	
above 50 up to 55	± 2.5	± 0.	7/19 N	ove 170 up to 185	3.0	
above 55 up to 60	± 2.5	± 1.	00 abo	ove 185 up to 200	3.1	
above 60 up to 70	± 3.0	± 1.	20 miles (1997)	ove 200 up to 250	3.5	
above 70 up to 80	± 3.5	± 1.	8000	ove 250 up to 300	3.9	
above 80 up to 90	± 4.0	± 1.	ACTION 100 HOLDS	ove 300 up to 350	4.3	
above 90 up to 100	± 4.5	± 1.	2000 P	ove 350 up to 400	4.7	
above 100 up to 110 above 110 up to 125	± 6.0 ± 6.5	± 2.1 ± 2.		ove 400 upto 450 ove 450 upto 500	5.1 5.5	
above 125 up to 140	± 6.0	± 2. ± 2.	22		6.3	
above 140 up to 155	± 6.5	± 2.		ove 600 upto 600 ove 600 upto 700	7.1	
above 155 up to 170	± 7.0	± 3)	2000	ove 700 up to 800	7.9	
above 170 up to 185	± 7.5	± 3.	\$1000 mm (1000)	ove 800 up to 900	8.7	
above 185 up to 200	± 8.0	± 3.	0.0000	ove 900 up to 1000	9.5	
above 200 up to 250	± 9.0	± 4.		ove 1000 '	1.5 +0.8% -1	
above 250 up to 300	± 10.0	± 4.	L/1/2	ease contact us for str	ictar tolaramas	
above 300 up to 350	± 11.0	± 5.		BOC CONBOL BOTTON ON	icci (cici Bi zes.	
above 350 up to 400	± 12.0		50 Ma	nufacturing process		П
above 400 up to 450 above 450 up to 500	± 13.0 ± 14.0	± 6.	90	M.1		
above 450 up to 500 above 500 up to 600	± 14.0 ± 15.0	± 0.	CONT. CO. CO. CO. CO. CO. CO. CO. CO. CO. CO	sted, turned, extruded	d for parts with an	
above 600 up to 700	± 16.0	± 8.	T(T) (1) (1) (1) (1)	velope size of 30 mm		а
above 700 up to 800	± 17.5	± 9.	1000	25		H
above 800 up to 900	± 19.0	± 9.	50 Ex		an envelope size up to 30	
above 900 up to 1000	± 20.0	± 10.1			ed, metered sem i-moist	
above 1000	± 0.02 d	± 0.	01 · d Pré	essed, meteredictry pr	essed, white machined	L
Accuracy	coarse	mediu	A STATE OF THE PARTY OF THE PAR			3/10
DIN EN 60672 Type	C 610 C 7	99 C 610	C 799			
Manufacturing processes Casted		- 0 8		C	-	
Turned				X_	fa	-
Extruded envelope size				777777	77777777777	7
30 mm and higher				-		
Extruded envelope size		2020	564	Deflec	tion of a cylindrical form	ed
up to 30 mm		•		<u></u>		
Non-metered pressed		100		Λ		-
Metered semi-moist pressed	•	4 2		H-		-
			○ ◆	2000		
Metered dry pressed White machined			2.		fa	_

non-metered pressed, metered sem i-moist sed, metered dry pressed, white machined	Common application
	45. 006
fa	>
	7777
Deflection of a cylindrical formed part	
1	
minimin	7777
Deflection of a non-cylindrical formed pa	art

Special agreements are required.

Customary manufacturing process

TUBES

FUSED SILICA ROLLERS

Long Service Life

High Performance

Flexibility SPECIALITIES

Servis i prodazba: Bitola Stara carsija: 047/203 330

Servis i prodazba: Skopje G.T.C. Bunjakovec: 02/309 8 103

www.elektrolux.mk