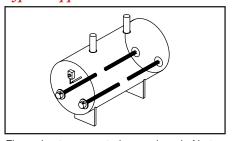
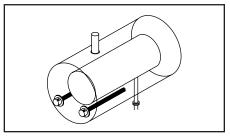
Flanged Immersion Heaters

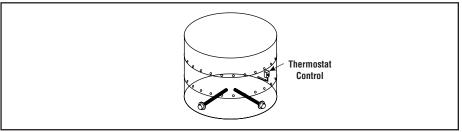
Overview

Flanged Immersion Heaters consist of hairpin bent tubular elements welded or brazed into a flange and provided with wiring boxes for electrical connections. Flange heaters are installed by bolting to a matching flange welded to the tank wall or nozzle. A wide selection of flange sizes, kilowatt ratings, voltages, terminal enclosures and sheath materials make these heaters ideal for all types of heating applications.


Applications

Flanged immersion heaters are one of the most widely used methods for heating gases and liquids (such as water, oil, heat transfer fluid and corrosive solutions). Designed for use in tanks and pressurized vessels, they are easy to install and maintain to provide heat for many processes. The direct immersion method is energy efficient and easily monitored and controlled.


- · Hot Water Storage Tanks
- Warming Equipment
- · Preheating All Grades of Oil
- · Food Processing Equipment
- . Cleaning and Rinsing Tanks
- · Heat Transfer Systems
- · Process Air Equipment
- · Boiler Equipment
- · Freeze Protection of Any Fluid


Typical Applications

Flange heaters mounted on each end of hot water storage tank or for an efficient shower system.

Flange heaters in tank of water to heat inner tank of viscous materials.

Flange heaters mounted angularly around tank bottom permitting free vertical work area.

Flanged Immersion Heaters

Application & Selection Guidelines

Selection Guidelines

The selection of the proper Flanged Immersion Heater requires critical engineering judgement. After determining the heat requirement (see the applications section of this catalog), the proper selection of the flange material, heating element sheath material and correct watt density is critical for long life of a heater. The following table may be used as a guide to this selection along with the Technical Information at the back of this catalog. Ultimate choice is determined by the knowledge of the process and engineering acumen of the plant engineer.

Heater application is influenced by the following parameters.

- 1 The heated medium viscosity, specific heat density and corrosive properties.
- 2 Contaminants present in the medium.
- 3 The heater sheath material corrosion resistant properties.
- 4 Watt density of the heating element the heat output per square inch.
- (5) Maximum sheath temperature this is the recommended maximum sheath temperature of the element material. It is not the operating temperature of the heated medium (sheath temperature is dependent on items 1 thru 4).

Applications

See Selection Guidelines below for your application.

- · Hot Water Storage Tanks
- · Warming Equipment
- · Preheating All Grades of Oil
- . Food Processing Equipment
- Cleaning and Rinsing Tanks
- Heat Transfer Systems
- · Process Air Equipment
- · Boiler Equipment
- · Freeze Protection of Any Fluid

Application Selection — Guidelines

	1	2	3	4	5	
Application	Solution or Heater Type	Alkaline or Acid Content (Est. % by Volume)	Sheath Material	Watt Density (W/In²)	Max. Recommended Sheath Temp. (°F)	
Water & Very Mild Solutions	Clean Water	pH6 to pH8 Neutral	Copper	45	350	
	Process Water Very Weak solutions	pH5 to pH9 2 - 3%	Stainless Steel ¹	45	1200	
	Weak Solutions	5 - 6%	INCOLOY®	45	1600	
	Demineralized, De-ionized or pure water	_	INCOLOY® w/ Stainless Flange	45	1600	
Corrosive & High Viscous Solutions	Mild Corrosive Solution	5 - 15%	Stainless Steel ¹	23	1200	
	More Severe Corrosive Solution	10 - 25%	INCOLOY®	23	1200	
	Severe Corrosive Solution	30 - 60%	INCOLOY® w/ Stainless Flange	15	1600	
Specialty Water	Steam Boilers	Treated	INCOLOY®, Copper	_	1600	
Oil	Low Viscosity Oil Medium Viscosity Oil High Viscosity Oil	_ _ _	Steel Steel Steel	23 15 6.5	750 750 750	
Oil Reservoir	Lubrication Oil	_	Steel	15	750	
Air, Gases & Steam	Low Temperature		Stainless Steel	23	1200	
	High Temperature		INCOLOY®	23	1600	

Flanged Immersion Heaters Selection Guidelines

Flanged Immersion Heaters — Selection Guidelines

1 ungen 1mmersion	11000000				
Application	Flange Size (In.)	Sheath Material	Flange Material	Heater Type	Page
Clean Water	3 5 6 8 10 12	Copper Copper Copper Copper Copper Copper Copper Copper	Steel Steel Steel Steel Steel Steel Steel	TM TM TM TM TM TM TM	B-92 B-92 B-93 B-93 B-93 B-93
Process Water	3 5 6 8	SS SS SS SS	Steel Steel Steel Steel	TMS TMS TMS TMS	B-94 B-95 B-95 B-95
Solution Water	3 5 6 8	INCOLOY® INCOLOY® INCOLOY® INCOLOY®	Steel Steel Steel Steel	TMI TMI TMI TMI	B-96 B-97 B-97 B-97
Mildly Corrosive Solution	3 5 6 8	SS SS SS SS	Steel Steel Steel Steel	TMS TMS TMS TMS	B-98 B-99 B-99 B-99
Corrosive Solution & Gas	3 5 6 8 10 12 14	INCOLOY® INCOLOY® INCOLOY® INCOLOY® INCOLOY® INCOLOY® INCOLOY® INCOLOY®	Steel Steel Steel Steel Steel Steel	TMI TMI TMI TMI TMI TMI TMI	B-100 B-101 B-101 B-101 B-101 B-101 B-101
Severely Corrosive Solution	3 5 6	INCOLOY® INCOLOY® INCOLOY®	SS SS SS	TMIS TMIS TMIS	B-102 B-102 B-102
Demineralized or De-ionized Water	3 5	INCOLOY® INCOLOY®	SS SS	TMIS TMIS	B-103 B-103
Boiler & Water	2-1/2 Sq. 2-1/2 Sq. 4-1/2 Sq.	Copper INCOLOY® Copper	Brass Steel Steel	TTSF TTSF WCFS	B-109 B-109 B-109
Light Weight Oil	3 5 6 8 10 12 14	Steel Steel Steel Steel Steel Steel Steel	Steel Steel Steel Steel Steel Steel	TMO TMO TMO TMO TMO TMO TMO	B-104 B-104 B-105 B-105 B-105 B-105 B-105
Medium Weight Oil	3 5 6	Steel Steel Steel	Steel Steel Steel	TMO TMO TMO	B-106 B-106 B-106
Heavy Weight Oil	3 5	Steel Steel	Steel Steel	TMO TMO	B-108 B-108
Food Equipment	3-1/4 Dia.	Copper Copper	Brass Brass	TTUH TTUH-CO	B-110 B-111

Flanged Immersion Heaters

Technical & Application Data

Description

These thru-the-side immersion heaters utilize standard pipe flanges ranging from 3 to 14" nominal pipe diameter to support high tank pressures of superheated steam, compressed gases or liquids. They are installed through a matching companion flange (obtainable from local industrial supply houses) to the tank wall. A wide selection of Watt densities, heating outputs and flange sizes and ratings make this an excellent heater for all tanks, vats or irregularly shaped vessels.

Features — Stock Units

Element

- Materials Copper, steel, 304 stainless steel, INCOLOY®.
- Number Elements in Flanges 3, 6, 12, 18, 27, 36 and 45.
- Element Diameter 0.475".
- Watt Density 6.5, 15, 23, 45 and 75 W/ln².

Flange

- Material Carbon steel, stainless steel.
- Rating 150 lb. pressure class per ANSI B16.5
- Sizes 3, 5, 6, 8, 10, 12 and 14", 150 lb.

Process Control Thermowell

- Materials Copper, carbon steel, stainless steel, INCOLOY®.
- 1/2" diameter.

Special Features

Kilowatt Ratings — 500 kW and above available.

Element

 Materials — 316, 321, 347 stainless steel, INCONEL® and more.

Flange

- Materials 316, 321, 347 stainless steel, INCONEL®, INCOLOY® and more.
- Rating 300, 400, 600, 900, 1,500 and 2,500 lb. pressure class.
- Size 16, 18" and larger.

Optional Features

ASME Section I, IV and VIII designed and certified

Baffles to distribute flow on elements

Passivation of stainless steel

Immersion Lengths up to 240 inches

Stand-off Terminal Enclosures to isolate terminal housing from flange in high temperature applications

Stock Status & Availability

S - Stocked in finished form

AS — Assembly Stock. Items put together using major stocked subassemblies requiring three day shipping lead time

NS — Non Stock (made to order). Contact your Local Chromalox Sales office for delivery

Terminal Enclosures

Type E1 General Purpose, sheet metal (NEMA 1) painted with red enamel

Type E2 Combination Moisture Resistant, Explosion Resistant

Type E3 Explosion Resistant

Type E4 Moisture Resistant

Type E2 and E3 Explosion Resistant enclosures involve the use of a wiring enclosures for use in hazardous location conditions:

- Class I Groups B, C & D, Division 1 & 2
- Class II Groups E, F & G, Division 1 & 2.

Safe operation of heaters equipped with these enclosures depends on employment of electrical wiring meeting the National Electrical Code for hazardous locations and limiting maximum operating temperatures (including temperatures on outside of vessel, piping, flanges, screw plugs, enclosures and other heat conducting parts) as dictated by flammable liquids, vapors or gases present. Approved pressure and/or temperature limiting controls must be used to assure safe operation in the event of a system malfunction.

Temperature Controls

- A thermostat protective well is standard on most models. This well is installed through the flange, parallel with the heating elements. An AR type on-off mechanical control can be externally mounted to the heater with the capillary bulb installed in this well (order separately — see Controls section for details).
- A contactor is needed when the line voltage and/or current exceeds the thermostat rating
- Other types of controls and sensors are available where a high degree of accuracy or a more versatile control scheme is required. Electronic controls and complete control panels are easily installed. See the Controls section for details.

Corrosion Policy

Chromalox cannot warrant any electric immersion heater against failure by sheath corrosion if such failure is the result of operating conditions beyond the control of the heater manufacturer. It is the responsibility of the purchaser to make the ultimate choice of sheath material based on their knowledge of the chemical composition of the corrosive solution, character of materials entering the solution, and controls which he maintains on the process.